石灰窑除尘设备本体结构耐久性评价模型采用的数学方法主要有:层次分析法、熵权法、模糊数学理论和模糊综合决策法。从每个过滤筒的流量分布来看,垂直双导板模型中单个过滤筒的气体处理能力偏差在114。层次分析法(AHP)作为一种系统的层次分析方法,不仅能够简化系统分析和计算,量化一些定性指标,使人们的思维过程数学化,还能够帮助评价者保持思维过程的一致性;系统内配置信息的ack,或者不存在随机事件。综合评价模型的应用一般在灰色关联和模糊数学两种数学理论的前提下进行。
在工程应用中建立了石灰窑除尘设备基于AHP的海洋混凝土结构耐久性评估模型,并将其成功地应用于南海港混凝土结构的耐久性评估。基于层次分析法(AHP),结合熵权法和模糊理论,采用模糊综合评判法,对影响石灰窑除尘设备本体结构耐久性的多种因素进行综合,建立电除尘器本体结构耐久性评价模型,并制定评分标准及相应的修复与修复。运用层次分析法建立了混凝土坝监测系统的评价体系,并通过实例分析证明该评价体系与工程基本一致。2008年,P.K.Dey和E.K.Ramcharan使用层次分析法(AHP)解决采石场选址问题,并对定性问题进行量化,这更有说服力。在2016年,O.U.Akaa使用层次分析法(AHP)来分析防火钢结构的防火选择。本文主要研究石灰窑除尘设备本体结构耐久性的评价方法。分析了电除尘器的结构特点及影响钢材耐久性的因素。讨论了影响石灰窑除尘设备本体结构耐久性的因素。在此基础上,建立了电除尘器主体结构的耐久性评价模型,并将其应用于实际工程。对于耐久性达到标准的结构和钢构件,不需要特殊处理,正常的维护就足够了。对于耐久性不达标的钢构件,需要根据耐久性进行修补加固。当耐久性严重不足时,需要拆除。
石灰窑除尘设备结构的耐久性受多种因素的影响,这些因素之间具有模糊性、主观性和复杂性。随着计算机硬件和软件的快速发展,现有的CFD软件能够更准确地模拟各种复杂流场。为了解决这一问题,本章介绍了层次分析法、熵权法和模糊数学等方法。基于层次分析法(AHP),结合熵权法和模糊理论,采用模糊综合评判法,对影响石灰窑除尘设备本体结构耐久性的多种因素进行综合,建立电除尘器本体结构耐久性评价模型,并制定评分标准及相应的修复与修复。建议。ESP自2000年以来已经服务了18年。在施工过程中,它已经修了很多次。
由于电除尘器主结构及电路连接处均设有阴极板和阳极板,经过多年的除尘,石灰窑除尘设备主结构中的烟雾中有害因素较多,内部环境较为复杂,因此电除尘器主要结构部件的检测必须由人员进行。滤筒上的滤料为带覆膜材料的纺粘无纺布,覆膜材料为聚四氟乙烯膜。因此,本文所使用的涂层腐蚀速率和平均腐蚀深度的实际检测数据均取自电厂的检测数据库。根据主观评分对腐蚀环境和定性指标的外观进行评价。首先,我们把分数设定在0到10分之间。对于腐蚀环境,分数越高,腐蚀环境越好,部件的耐久性越好。对于外观条件,涂层的耐久性越好,起泡、剥落和腐蚀越小。然后,根据一些和检查人员,对ESP的每个组成部分进行评分。去除高分和低分后,取平均值作为定性指标的测量值。根据第石灰窑除尘设备主体结构耐久性模型的内容,建立了兰州电力修理厂静电除尘器主体结构的耐久性模型,并对各部件和结构进行了耐久性诊断。
石灰窑除尘设备开孔率是影响阻力系数的重要因素。本文不仅对多孔板在寒冷环境下的阻力特性进行了研究,而且对石灰窑除尘设备原设计的试验系统进行了研究。管道的形状(圆形或矩形)不影响压力损失系数。相对厚度对阻力系数影响较大。当其它参数不变时,相对厚度的增加将导致系统阻力系数的减小。在大多数情况下,随着开口数量的增加,阻力系数将减小。孔间循环面积的大小将影响阻力系数,孔分布与阻力系数有关。以山西某电厂350MW燃煤石灰窑除尘设备为原型,按1∶145875的比例建立物理模型。经过多次试验,确定了多孔板与调流板导板夹角的醉佳组合方案,并确定了该除尘器内的气流分布。
下一步调整了电除尘器,取得了满意的效果。另外,对于高比电阻或高粘性烟气粉尘,除尘效果较好,终电场区域的除尘效率大大提高。多孔板的阻力特性在不同环境中变化很大,阻力系数受多种因素的影响。本文研究了多孔板在不同环境下的电阻特性。石灰窑除尘设备主要分为两部分:常温单相流体介质环境下多孔板电阻特性的影响因素和高温环境下多孔板电阻特性的影响因素。本文建立了多孔板阻力特性的物理模型试验系统。石灰窑除尘设备通过改变系统内单相流动速度,改变雷诺数或开孔率、相对厚度和孔数,研究多孔板的阻力特性。通过模拟采暖系统的流体温度,模拟电厂除尘器内的流体环境。研究了多孔板在高温环境下电阻特性的影响因素。
在石灰窑除尘设备设计方案中,三层多孔板的开孔率分布主要在上部较小,在中部和下部较高。结果表明,二次电流由1000mA上升到1500mA,电压上升到80kV。由于多孔板各部分的开孔率不同,上部的动压较小,中部和下部的动压较大,速度分布比非多孔板均匀。左、右下侧流速相对较小,石灰窑除尘设备主要是因为膨胀角越小,回流面积越大,阻力越大,动压越小,速度越低。从整个断面的速度分布来看,没有大面积或小面积的集流区,说明调整方案比较成功。非均匀开孔设计方案可有效提高集尘器内气流的均匀性和除尘效率。
通过对袋式除尘器内部气流分布的分析,利用不同孔径比的不同尺寸的多孔板对流场不同区域的速度分布进行调整,大大提高了气流的均匀性。湿法电除尘器采用立式布置,内阳极系统采用金属板结构,阴极采用针形横向极线和间歇喷淋灰清洗设计。后得出多孔板的醉佳组合方案,可应用于大膨胀角除尘器。石灰窑除尘设备主测速段的相对速度偏差从82%减小到21%。通过多次试验,确定了导流板的角度,使流量偏差从7.3%降低到0.9%。针对电厂电袋除尘器内气流速度分布不均匀的问题,进行了试验研究。不同开孔率的多孔板组合方案及增设流量调节板可有效改善气流速度分布,减小相对速度偏差和流量偏差,提高除尘系统除尘效率,延长袋式除尘器的使用寿命。对实际电厂除尘器中多孔板或导板的设计具有指导意义。